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We calculate the field-theoretic functions of the generalized dynamical model C*8, where two conserved
secondary densities are coupled to a nonconserved complex order parametersOPd, in two-loop order. A
transformation to “orthogonalized” densities can be performed where only one secondary density with non-
trivial static coupling to the OP exists while the second one remains Gaussian. The secondary densities remain
dynamically coupled by the nondiagonal diffusion coefficent. General relations for the field-theoretic functions
allow us to relate the asymptotic critical properties of model C*8 to the simpler model C* with only one
conserved density coupled to the OP. The nonasymptotic properties, however, differ as can be seen from the
flow of the dynamic parameters, which is presented for the case of a real OP with componetsn=1,2,3.
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I. INTRODUCTION

The universal critical properties of dynamic critical be-
havior may be separated into different universality classes
depending on the structure of the set of dynamical equations
in addition to the separation into static universality classes
f1g. The set of dynamical equations contains the slow
densities—that is the order parameter densitysOPDd—
because of the critical slowing down and other densities of
conserved quantities in the systemfsecondary densities
sSD’sdg. Moreover, it is important in which way these SD’s
couple to the OPD and with each other. One may have re-
versible couplings found from Poisson bracket relationsf2g,
static couplings in the Hamiltonian, and/or a coupling via the
irreversible part in the equationssdiffusive terms in the equa-
tions of motiond.

The structurally simplest model in this respect is model C,
where the nonconserved OPD is coupled via a static term to
one SDf3g. This model is highly nontrivial and its critical
properties have been resolved only recentlyf4g. Another im-
portant aspect is that model C with OP dimensionn is the
limiting case of more complicated models with reversible
terms. One example forn=2 is model F8 describing the criti-
cal dynamics of3He-4He mixturessseef5g for the model and
f6g for a quantitative comparison of theoryf7g with experi-
mentd. However, this model containstwo conserved densities
coupling to the OPD. Thus it seems to be worthwile to gen-
eralize model C to the case of more than one secondary
densitysmodel C*8d. Moreover, the properties are of interest
when one wants to describe the tricritical behavior and/or the
crossover between tricritical and the usual second-order tran-
sition behavior for3He-4He mixtures. Nevertheless, model
C8 might be of interest in itself. One might also think of
applications to segragating systemssalloysd described by
model C. The order parameter in these systems is noncon-
served and couples to the concentration of one component
f8,9g. If one adds the energy density, model C8 is obtained.

From model C one knows that there are three regions
depending on the number of components of the OPDssee
Fig. 1 and compare Fig. 1 inf10gd: region Ia where the SD

decouples from the OPD and model C reduces to model A
f11g; region Ib sweak scalingd where the OPD and the SD
scale differently, the OPD with the model A dynamic critical
exponent z=2+ch and the secondary density withz=2
+a /n wherea is the positive specific heat exponent andn
the correlation length exponent; region IIsstrong scalingd
where all densities scale withz=2+a /n. In the last region
the fixed point value of the time scale ratiow* of the relax-
ation rate of the OPD and diffusion constant of the SD is
finite and nonzero, while in the other regions it is zero. This
means that in regions I the OPD is much slower than the SD.
The reverse situation of the SD being slower than the OPD
sw* =`d is not a stable fixed pointf12g.

As we can expect from other models containing additional
conserved densities like model F8 and model E8 f13g the
additional conserved density does not change the asymptotic

FIG. 1. Regions of different dynamical critical behavior in the
e-n plane se=4−dd, which are defined by the stable fixed point
values of the static couplingg and the dynamic parameterr2. The
fixed point value of the second dynamic parameterr1 and the
imaginary part ofr2 are always zero. The borderlines are defined by
the conditions indicated.
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critical properties of the OP. This was guaranteed by certain
structural properties of the field theoretic functions valid in-
dependent of the perturbational order of the explicit field
theoretic calculation. This is the case for model C*8 too.
General relations of the model- C*8 field-theoretic functions
prove that the asymptotic critical behavior of the OP is the
same as in the simpler model C*. Restricting the analysis to
the case of a real OP we show that although the fixed point
values of the dynamic parameters depend on a new time
scale ratiow3, the dynamic critical exponents are the same as
in model Cssee Fig. 1d.

The paper is organized as follows: After setting up the
model equationssSec. IId, the model is renormalized in Sec.
III and the relevant field-theoretic functions are calculated in
two-loop order. Then it is shown that the asymptotic critical
properties can be mapped onto model CsSec. IVd and in Sec.
V the nonasymptotic flow is considered. After the Conclu-
sion some details of the calculations are contained in the
Appendixes.

II. MODEL C *8 EQUATIONS

We consider a system including a complex nonconserved

OP cW 0sx,td and two real conserved secondary densities
m10sx,td andm20sx,td. The order parameter is assumed to be
a vector withn/2 sn=2,4, . . .d componentsf14g. The two
secondary densities are scalar quantities. The critical dynam-
ics of the nonconserved OP is purely relaxational while the
dynamics of the conserved secondary densities is determined
by a diffusive mode. This leads to the dynamic equations

]cW 0

]t
= − 2G̊

dH

dcW 0
+

+ uWc, s1d

]cW 0
+

]t
= − 2G+˚ dH

dcW 0

+ uWc
+, s2d

]m10

]t
= l̊¹2 dH

dm10
+ L̊¹2 dH

dm20
+ um1

, s3d

]m20

]t
= L̊¹2 dH

dm10
+ m̊¹2 dH

dm20
+ um2

, s4d

which we will call model C*8 in the following. In the case of
a real order parameter it reduces to model C8. The super-
script + denotes complex-conjugated quantities. The kinetic

coefficient of the OPG̊=G8˚ + iG9˚ is assumed to be a complex
quantity. The stochastic forcesuai

fulfill the relations

kuci
sx,tduc j

+ sx8,t8dl = 4G8˚ dsx − x8ddst − t8ddi j , s5d

kum1
sx,tdum1

sx8,t8dl = − 2l̊¹2dsx − x8ddst − t8d, s6d

kum2
sx,tdum2

sx8,t8dl = − 2m̊¹2dsx − x8ddst − t8d, s7d

kum1
sx,tdum2

sx8,t8dl = − 2L̊¹2dsx − x8ddst − t8d. s8d

The critical behavior of the thermodynamic derivatives fol-
lows from the static functional

Hhc0,mi0j = Hchc0j + Hmhc0,mi0j, s9d

with an OP functional

Hchc0j =E ddxH1

2
t̊ucW 0u2 +

1

2o
i=1

n/2

o
m=1

d

¹mci0¹mci0
+ +

ů̃

4!
ucW 0u4J

s10d

and a secondary density functional

Hmhc0,mi0j =E ddxH1

2
m10

2 +
1

2
m20

2 +
1

2
g̊m20ucW 0u2 − h̊m20J ,

s11d

with ucW 0u2;cW 0
+·cW 0 fthe center dot denotes asn/2d-

dimensional scalar productg and d is the spatial dimension.
The static functional for the secondary densitiess11d is of
course not the general form for model C*8. It contains al-
ready several special features. First, only one couplingg̊ and

one external fieldh̊, corresponding to the second secondary
densitym20, are present while the first secondary densitym10
appears in a Gaussian form. Second, the whole Gaussian part
of the secondary densities is diagonal and static susceptibili-
ties are absent. It is obtained by some suitable “orthogonal-
ization” of the general form of the static functional, which
usually appears. A subsequent scaling of the densities leads
to the static functional in Eq.s11d. Details concerning these
transformations are described in Appendix A.

The above static functional may be reduced to the
Ginzburg-Landau-Wilson functional with complex OP by in-
tegrating out the secondary density.

HGLW=E ddxH1

2
r̊ ucW 0u2 +

1

2o
i=1

n/2

o
m=1

d

¹mci0¹mci0
+ +

ů

4!
ucW 0u4J .

s12d

The parametersr andu in Eq. s12d are related tot, ũ, g, and
h in Eq. s9d by

r̊ = t̊ + g̊h̊, ů = ů̃ − 3g2˚ . s13d

The choice of asn/2d-component OP in the equations above
guarantees that the static functionalss9d and s12d, and also
all static properties derived from them, are fully equivalent
to the corresponding static properties of a system with a real
n-component order parametersthen with n=1,2, . . .d. The
ability to eliminate the secondary density parts11d in Eq. s9d
also leads to relations between the correlations of the second-
ary densitym20 and the OP correlations. For the first and
second cumulants one obtains

km20sxdl = h̊ − g̊K1

2
ucW 0sxdu2L , s14d
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km20sxdm20s0dlc = 1 +g2˚ K1

2
ucW 0sxdu2

1

2
ucW 0s0du2L

c
. s15d

Note that the angular brackets in Eqs.s14d and s15d have to
be calculated with a probability density exps−Hd /N on the
left-hand side and with exps−HGLWd /N8 on the right-hand
side, whereN andN8 are appropriate normalization factors.

The external fieldh̊ is chosen to eliminate the finite expec-
tation value ofm20. Choosing

h̊ = g̊K1

2
ucW 0sxdu2L s16d

from Eq. s14d immediately followskm20sxdl=0.

III. RENORMALIZATION OF MODEL C *8

Using the static functionals9d the renormalization of the
static parameters is quite analogous to model Csfor details
see Appendix B inf10gd. The secondary densitym20 and all
couplings and coefficients belonging to it correspond to the
secondary densitym0 in f10g. The additional secondary den-
sity m10 does not couple to the order parameter. Therefore no
perturbational contributions arise from this density and no
new renormalization is needed compared to model C. This
outlines the advantage in using the static functional with Eq.
s11d instead of Eq.sA1d.

In dynamics the kinetic coefficientsG andG+ renormalize
identical to model C*: namely,

G̊ = ZGG, G̊+ = ZG
+G+. s17d

The kinetic coefficients of the secondary densities renormal-
ize as

l̊ = Zll, L̊ = ZLL, m̊ = Zmm. s18d

Note that the coefficientm here corresponds tol in f10g. In
the present dynamic model mode couplings are absent.
Therefore we simply have

Zl = 1, ZL = Zm2
, Zm = Zm2

2 , s19d

whereZm2
is the renormalization factor ofm2 scorresponding

to Zm in f10gd.

A. z and b functions

We will use in statics and dynamics the same definition
for eachz function,

zai
sha jjd =

d ln Zai

−1

d ln k
, s20d

in the following, whereha jj=hu,g ,G ,G+,l ,m ,Lj is the set
of static and dynamic model parameters.ai represents any
densityc ,mi0 or any model parameterai.

Because the secondary densitym10 does not cause any
additional renormalization in statics when Eq.s11d is used,
all static z functions, and the relations between them, are
identical to those presented inf10g for model C* /C. Also the

z functions of the kinetic order parameter coefficientsG, G+

are defined and calculated analogously tof10g fcompare Eqs.
s16d and s17d thereing. The only difference is that they now
depend also on the additional kinetic coefficients of the sec-
ondary densities. The correspondingz functions follow from
Eqs.s19d,

zlsu,gd = 0, zLsu,gd = zm2
su,gd, zmsu,gd = 2zm2

su,gd,

s21d

and are determined by the staticz function

zm2
su,gd =

1

2
g2Bc2sud. s22d

The functionBc2sud is connected to renormalization of the
specific heat and has been defined inf10g.

Introducing time scale ratios

w1 =
G

l
, w2 =

G

m
, w3 =

L
Îlm

, s23d

we immediately obtain the correspondingz functions as

zw1
su,g,hwjd = zGsu,g,hwjd, s24d

zw2
su,g,hwjd = zGsu,g,hwjd − g2Bc2sud, s25d

zw3
su,g,hwjd = 0. s26d

The b functions for static or dynamic model parameters
ai are generally defined as

bai
sha jjd = ai„− ci + zai

sha jjd…, s27d

whereci is the naive cutoff dimension of the corresponding
parameter obtained by power counting. The staticb func-
tions and flow equations are explicitly listed inf10g. The b
functions of the time scale ratioswi can be written as

bwi
su,g,hwjd = wizwi

su,g,hwjd, s28d

with i =1,2,3, which follow immediately from Eq.s27d.
Since the cutoff dimensionci of all kinetic coefficients is
zero, it is zero also for all ratioswi; see Eq.s23d. The z
functions are taken from Eqs.s24d–s26d. The flow equations
of the time scale ratios are given by

l
dwi

dl
= bwi

su,g,hwjd. s29d

Equation s26d implies that w3 stays constant at its initial
value and therefore appears like a fixed external parameter
within the model f15g. The only dynamicz function zG,
which defines the dynamical critical exponent of the OP, has
to be determined from dynamic perturbation expansion
within model C*8. All other functions are known from the
Ginzburg-Landau-Wilson models12d.

From the general structure of theb functions s28d we
obtain immediately the flow equation for the ratiow1/w2 as
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l
d

dl

w1

w2
= g2Bc2sud, s30d

which is completely determined by static quantities.
The above equations are valid in the complex model C*8

as well as in the real model C8. In the first casehwj is a place
holder forw1,w1

+,w2,w2
+,w3 sw1 and w2 are complex quan-

titiesd; in the second casehwj stands forw1,w2,w3.
In the complex case the imaginary parts ofw1 andw2 in

Eqs. s23d are both related to the same imaginary partG9 of
the kinetic coefficient of the order parametersl and m are
real quantities anywayd. Thusw19 andw29 cannot be indepen-
dent from each other. This means that the ratiow1/w2 has to
be real even for complexwi, which is verified in Eq.s30d.
From the condition Imsw1/w2d=0 we obtain immediately

w19 = w29
w18

w28
. s31d

B. Two-loop results

Using the model with the transformed static functional
s11d, the explicit two-loop expressions of the staticz func-
tions are identical to those of model C* /C in f10g and can be
taken from there. In order to simplify the dynamic perturba-
tion expansion the dynamicz functionzG has been calculated
within the dynamically diagonalized modelsB8d and sB9d
given in Appendix B leading to the expressionsB14d.

For the following considerations it is convenient to intro-
duce

ri =
wi

1 + wi
, i = 1,2, s32d

mapping the time scale ratiosw1 andw2 onto a finite region
of the complex plane. In the case of model C9 wherew1 and
w2 are real the corresponding parametersr1 andr2 fall into
the interval 0øri ø1. Transforming thezG function sB18d of
the dynamically diagonal system back to the parameters of
the dynamically nondiagonal models23d and s32d, respec-
tively, we obtain

zGsu,g,r1,r2,w3d = zG
sAdsud +

r2g2

1 − W3
2H1 −

n + 2

6
us1 − LAd

+
1

2

r2g2

1 − W3
2Fn + 2

2
LA −

n

2
+

r2 + r1W3
2

1 − W3
2 GJ

−
1

2
S g2

Kr
D2

sD+ + D−d

−
1

2

w3
2

1 − w3
2Sr1r2g2

Kr
D2

sD3
s1d + D3

s2dd, s33d

with coefficients

W3
2 = s1 − r1ds1 − r2dw3

2 s34d

and

Kr = Îsr2 − r1d2 + 4r1r2s1 − r1ds1 − r2dw3
2. s35d

The parametersD± are defined as

D± = S±sr1 − r2d + Kr

2
R±D2

s1 + R±dlns1 − R±
2d, s36d

where we have introduced

R± =
2r1r2

r1 + r2 ± Kr

. s37d

The cross coefficientsD3
sid are

D3
s1d = 12 −

sr1 + r2dS1 +
r1r2

1 − W3
2D − 4r1r2

s1 − r1ds1 − r2ds1 − w3
2d

2
3

1 − r1r2 − W3
2

1 − W3
2 lnS1 −

r1r2

1 − W3
2D , s38d

D3
s2d =

r1
2r2

2Kr

s1 − r1ds1 − r2ds1 − w3
2ds1 − W3

2d2

3FS 1

R+
− 1D2

lnSr1 + r2 − 2r1r2

R−s1 − W3
2d

D
− S 1

R−
− 1D2

lnSr1 + r2 − 2r1r2

R+s1 − W3
2d

DG . s39d

The contributionzG
sAdsud in Eq. s33d denotes the dynamicz

function of model A. Its two-loop expression is given in Eq.
sB16d in Appendix B. The abovez function s33d is valid in
both the complex and real models. The difference between
the two cases lies in the expression forLA. In the complex
model C*8 it reads

LA = 2 ln
2

1 +
G+

G

+ S2 +
G

G+Dln
S1 +

G+

G
D2

1 + 2
G+

G

, s40d

with G, and w1, w2 respectively, as complex parameters,
while in the real model C8 sin the limit G9→0d the function
LA reduces to the simple number

LA = 3 ln
4

3
, s41d

with w1, w2 also as real parameterssw3 is always reald.
Thez function s33d reaches different interesting limits for

special choices of its arguments.

1. Model C*8 for w3Æ0

The first limit of interest is the case where the dynamic
couplingL of the two secondary densities vanishes. The sec-
ondary density with index 1 has no static coupling to the
order parameter. It couples only via the dynamic cross coef-
ficient L, or w3 respectively; see Eqs.s3d and s4d. Thus set-
ting w3=0 the function has to reduce to thez function of
model C* /C from f10g. Taking into account
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W3 →
w3=0

0, Kr →
w3=0

r2 − r1, s42d

following immediately froms34d and s35d, the z function
s33d indeed reduces to

zGsu,g,r1,r2,0d

= zG
sAdsud + r2g2H1 −

n + 2

6
us1 − LAd

+
1

2
r2g2Fn + 2

2
LA −

n

2
+ r2 − s1 + r2dlns1 − r2

2dGJ
= zG

sCdsu,g,r2d, s43d

which corresponds to the model C* /C zG function where the
secondary density is indexed with 2fcompare Eq.s50d in
f10gg. The contributions of the other secondary density com-
pletely drop out.

2. Model C*8 for r1=0

This is another limit of interest and it is equivalent to
w1=0 which means that the first secondary density is getting
very fast compared to the order parameter. In this case it
should not influence the critical behavior and the critical dy-
namics should also be determined by model C* /C. Equations
s34d and s35d reduce to

W3 →
w1=0

s1 − r2dw3
2, Kr →

w1=0

r2. s44d

Performing this limit one has to take into account thatR−
becomes 0/0sR+ is simply 0d. A careful examination reveals
that we have

lim
r1→0

R− =
r2

1 − s1 − r2dw3
2 , s45d

leading to

zGsu,g,0,r2,w3d = zG
sAdsud + rsr2,w3dg2H1 −

n + 2

6
us1 − LAd

+
1

2
rsr2,w3dg2Fn + 2

2
LA −

n

2
+ rsr2,w3d

− f1 + rsr2,w3dglnf1 − r2sr2,w3dgGJ
= zG

sCdsu,g,rd, s46d

with rsr2,w3d as

rsr2,w3d =
r2

1 − s1 − r2dw3
2 . s47d

From Eq.s46d we can see thatr2 and w3 only enter in the
special combinations47d. We obtain a model C* /C z func-
tion with a dynamic parameterr and therefore the whole
critical dynamics is determined by model C* /C. All solutions
concerning fixed points and stability ofr can be taken from
f10g. r2 is then obtained by inverting Eq.s47d , which leads
to

r2 = r
1 − w3

2

1 − rw3
2 , s48d

as a function of the model C* /C parameterr and the external
parameterw3.

3. Model C*8 for r2=0

This limit describes a model where the secondary density,
which couples withg to the OP, is getting very fast and
therefore unimportant in the critical region. From Eq.s33d
we obtain

zGsu,g,r1,0,w3d = zG
sAdsud. s49d

In this case the critical dynamics is completely described by
model A.

IV. ASYMPTOTIC PROPERTIES OF MODEL C *8 /C8

The asymptotics of the model is essentially determined by
the fixed points and their stability from which the critical
exponents follow. From Eq.s9d it follows that the static fixed
points and their stability regions are the same as in model
C* /C f10g where an extensive discussion has been per-
formed.

A. Fixed points

Restricting the discussion to the stable fixed points we
have to consider the Heisenberg fixed pointu!=uH which is
always stablesd,dc=4d for all OP component numbersn.
The stable fixed point forg then depends onn. For Ising
models withn=1 a finite fixed pointg!=gC is stable, while
in planarsn=2d and Heisenbergsn=3d modelsg!=0 is the
stable fixed pointsthis holds for allnù2d. uH and gC have
been calculated in several renormalization schemes. Within
the minimal subtraction scheme thee-expanded results in
two-loop order can be taken from Eqs.s42d ands45d in f10g,
for instance. When Borel resummation is used the fixed point
values foruH /24 can be found in Table 2 off16g for integer
numbersn=0,1,2,3.

The dynamic fixed pointswi
! are determined by the zeros

of the b functionss28d together with Eq.s24d and s25d. But
it is more approprate to consider the fixed points of the pa-
rametersri introduced in Eq.s47d. From the definitions47d
of ri and thez functionss24d ands25d we obtain immediately

br1
su,g,r1,r2,w3d = r1s1 − r1dzGsu,g,r1,r2,w3d, s50d

br2
su,g,r1,r2,w3d = r2s1 − r2dfzGsu,g,r1,r2,w3d

− g2Bc2sudg. s51d

Inserting a static fixed pointu!, g! into Eqs.s50d ands51d we
have to look for solutionsr1

! andr2
! of the equations

bri
su!,g!,r1

!,r2
!,w3d = 0, i = 1,2. s52d

The above equations have always the four trivial solutions
sr1

! ,r2
!d=s0,0d ,s0,1d ,s1,0d ,s1,1d. The nontrivial fixed

points with finiter1
! or r2

! are determined by the equations
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zGsu!,g!,r1
!,r2

!,w3d = 0, s53d

zGsu!,g!,r1
!,r2

!,w3d − g!2Bc2su!d = 0. s54d

The stable static fixed pointg! determines which solutions of
the above two equations are possible.

sid In the casesnù2, with g!=0, we havefsee Eq.s33dg

zGsuH,0,r1
!,r2

!,w3d = zG
sAdsuHd Þ 0. s55d

The two equationss53d ands54d reduce to the same equation
without any solution. Thus in this case no fixed point values
ri

! different from 0 or 1 are possible.
sii d In the casen=1, with g!=gC, we obtain, from Eqs.

s53d and s54d,

zGsuH,gC,r1
!,r2

!,w3d = 0, s56d

zGsuH,gC,r1
!,r2

!,w3d − gC
2Bc2suHd = 0. s57d

Assuming that we have found a solution withri
!Þ0 which

fulfills Eq. s56d, the second equation would be in contradic-
tion to the first sincegC

2Bc2suHdÞ0. Thus a solution with
both parametersr1

!Þ0 andr2
!Þ0 is not possible. The only

nontrivial solution isr1
!=0, then Eq.s56d is obsolete accord-

ing to Eq.s50d , and one has to solve

zGsuH,gC,0,r2
!,w3d − gC

2Bc2suHd

= zG
sCdsuH,gC,r!d − gC

2Bc2suHd

= 0 s58d

for r2 or r, where the first equality follows from Eq.s46d.
However, nothing has to be calculated sincer!=r!sr2

! ,w3d
defined by Eq.s47d is given by the fixed point value deter-
mined already in model C* /C. Thus the fixed pointr2

! de-
pends on the parameterw3,

r2
! = r! 1 − w3

2

1 − r!w3
2 , s59d

quite analogously to Eq.s48d. In f10g we have shown that the
complex model C* has the same fixed points as the real
model C which was expressed byr9!=0, leading to a real
nontrivial fixed pointr!=r8!. From Eq.s59d follows imme-
diately thatr2

! is also always real and that the complex model
C8* and the real model C8 have the same fixed points. In Fig.
2 we have plotted the fixed point value ofr2 in the parameter
interval 0øw3ø1 at the OP component numbern=1 where
Eq. s59d is the stable fixed pointssee Table I and the next
subsectiond. At w3=0 the fixed point valuer2

! is equal to the
model C* /C fixed point valuer!=0.33.

Note that a solutionr2
!=0 andr1

!Þ0 is not possible. Due
to Eq. s49d one would end up with the conditionz G

sAdsuHd
!
5 0 following from Eq.s56d , which is not true. A survey of
all fixed points concerning the static Heisenberg fixed point
uH is given in Table I.

B. Stability

In order to obtain the dynamic transient exponents we
have to consider the eigenvalues of the matrix

F ]br j

]ri
G =1

]br1

]r1

]br2

]r1

]br1

]r2

]br2

]r2

2 . s60d

Inserting the general structures50d and s51d of the b func-
tions into Eq.s60d we obtain the eigenvalues

l± =
1

2
fs+ + G1 + G2 ± Îss− + G1 + G2d2 − 4s−G2g, s61d

with the definitions

s± = s1 – 2r1dzG ± s1 – 2r2dszG − g2Bc2d s62d

and

Gi = ris1 − rid
]zG

]ri
, i = 1,2. s63d

The transient exponentv is obtained by inserting a special
fixed point into the eigenvalues61d. Thus we have

FIG. 2. Fixed point value forr2 as function of the parameterw3

at OP component numbern=1 calculated from Eq.s59d .

TABLE I. Overview of the fixed point values of model C8* /C8
for the Heisenberg fixed pointu!=uH.

g! r1
! r2

! Stable for

0 0 0 n=2,3, . . .

0 1 -

1 0 -

1 1 -

gC 0 0 -

0 1 -

1 0 -

1 1 -

0 r! s1−w3
2d/ s1−r!w3

2d n=1
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v±sw3d = ul±sw3duhaj=ha* j, s64d

where haj represents the parameter sethu,g ,r1,r2j. For a
stable fixed point all two transient exponents have to be posi-
tive. The parameterw3 appears as an argument because it
enters the expressions like an external parameter.

For the trivial fixed pointsri =0,1 we always haveGi
=0 from Eq. s63d. In these cases the transient exponents
reduce to

v+ = s1 – 2r1
!dzGsuH,g!,r1

!,r2
!,w3d, s65d

v− = s1 – 2r2
!dfzGsuH,g!,r1

!,r2
!,w3d − g!2Bc2suHdg. s66d

Inserting the four combinationssr1
! ,r2

!d=s0,0d ,s0,1d ,
s1,0d ,s1,1d into Eqs.s65d and s66d one can see that in the
casess0,1d, s1,0d, ands1,1d at least one exponent is always
negative independent of the value ofg!. These fixed points
are unstable for all OP component numbersn. For sr1

! ,r2
!d

=s0,0d we obtain, forg!=0,

v+ = v− = zG
sAdsuHd = ch . 0 s67d

and, forg!=gC,

v+ = zG
sAdsuHd = ch . 0, s68d

v− = zG
sAdsuHd − gC

2Bc2suHd = ch −
a

n
. s69d

For planarsn=2d and Heisenbergsn=3d systems the static
fixed point g!=0 is stable. From Eq.s67d follows that r1

!

=r2
!=0 is the stable dynamic fixed point in this case. In Ising

sn=1d systemsg!=gC is stable and the dynamic transient
exponentss68d ands66d are relevant. In this casev− is nega-
tive becausea /n.ch. Thusr1

!=r2
!=0 is unstable. We want

to emphasize that at noninteger values ofn a region in the
n-d plane exists in whichv− is positive and therefore the
fixed point g!=gC, r1

!=0 and r2
!=0 stable. The region is

determined by the conditionsa /n=0 sborder for the stable
static fixed pointg!=0d anda /n=ch fborder forv− in Eq.
s69d to change signg and is identical to the one in model
C* /C ssee Fig. 1 here and inf10gd.

Considering the nontrivial fixed pointr1
!=0, r2

!Þ0,
the expressions in Eq.s63d reduce to G1=0 and G2
=r2s1−r2ds]zG /]r2d. The fixed point valuer2

! fulfills

zGsuH,gC,0,r2
!,w3d − gC

2Bc2suHd = 0. s70d

Equation s62d reduces therefore to s+=s−
=zGsuH ,gC,0 ,r2

! ,w3d and the transient exponents turn into

v+ = zGsuH,gC,0,r2
!,w3d, s71d

v− = r2
!s1 − r2

!d
u ] zG

]r2
haj=ha!j. s72d

Using Eq.s70d we obtain immediately

v+ = gC
2Bc2suHd =

a

n
, s73d

which is positive for Isingsn=1d systems. With Eqs.s59d
and s46d the transient exponentv− can be expressed by the
known dynamic transient exponentvr

sCd of model C* /C,
which is plotted in Fig. 3 inf10g. It turns out that

v− = vr
sCd. s74d

Thus we have proven that the stability regions and also the
dynamic exponentz, respectively, are identical to model
C* /C in the wholen-d plane. The cross time scale ratiow3
which couples the two secondary densities dynamically has
no influence on the critical dynamical behavior. However,
the fixed point values ofr2 and the nonasymptotic dynamic
flow of the time scale ratios depend on the values ofw3.

From Table II one sees that the transient exponents are
considerably small for all OP component numbersn consid-
ered. This leads to nonasymptotic behavior even very close
to the critical point.

In Table III we summarize the dynamical critical expo-
nents of the OP and the secondary densities in the different
regions in thee-n plane. The dynamic critical exponents are
defined by the corresponding values of the Onsager coeffi-
cient z functions at the stable fixed point: i.e.,

z= 2 +zG
!, z1 = 2, z2 = 2 +zm

! . s75d

In region Ia the secondary densities decouple at the fixed
point sg!=0d and the time scale ratioswi

! are both zero. The
model reduces to model A with the corresponding dynamic

TABLE II. Overview of the transient exponents of model
C8* /C8 for the stable fixed points at severaln. The exponents with
superscriptsbd are calculated with the Borel summed static func-
tions, while for the one with superscriptslde-expanded statics has
been usedf17g.

n v+
sbd v−

sbd v+
sld v−

sld

1 0.1766 0.0103 0.0988 0.0544

2 0.0304 0.0304 0.0145 0.0145

3 0.0312 0.0312 0.0150 0.0150

TABLE III. Overview of the dynamical critical and transient exponents of model C8 in the different
regions of then-d planessee Fig. 1d. vr

sCd is the transient of model C.

Region z z2 z1 v+ v−

II 2+ a /n 2+a /n 2 a /n vr
sCd

Ib 2+ch 2+a /n 2 ch ch−a /n

Ia 2+ch 2 2 ch ch
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exponent for the OP. The secondary densities have simply
z=2 according to their conservation property. In region Ib
one secondary densitysindexed by 2d couples to the OP
sg!Þ0d but the time ratioswi

! stay zero. This is the region of
weak scaling since due to the coupling to the OP the second-
ary density indexed by two scales nontrivially withz2=2
+a /n due tozm

! =gC
2!Bc2suH

! d=a /n. The time scale of the OP
remains at its model A value and is slower than that of the
secondary density in agreement withw2

!=0. In region IIw2
!

Þ0 and the OP and the secondary density 2 are slow with the
same time scale. This is expressed by the relation at the fixed
point zG

! =zm
! =a /n according to Eq.s58d. Thus z=z2=2

+a /n and one is in the strong scaling region.

V. NONASYMPTOTIC PROPERTIES OF MODEL C *8 /C8

The nonasymptotic behavior is mainly described by the
flow of the static and dynamic parameters. The latter are
determined by the flow equationss29d with the b functions
s28d for the time scale ratios. Because we do not need the
static functions at noninteger values ofn, as we did inf10g in
order to discuss borderlines in then-d plane, we use now
static flow equations with Borel summedz functions. This is
the reason for differences in the static flow presented inf10g
and here.

The static flow equations foru andg are thensat d=3d

l
du

dl
= busud, s76d

l
dg2

dl
= g2

„− 1 + 2zc2sud + g2Bc2sud…, s77d

with Bc2sud=n/2+Osu2d. The Borel-summed functions are

busud = −
u

4!
+ 4sn + 8dS u

4!
D2S1 + a4

u

4!
D

S1 + a5
u

4!
D , s78d

zc2sud = 4sn + 2d
u

4!
S1 – 10

u

4!
D + a1S u

4!
D3

− a2S u

4!
D4

.

s79d

The coefficientsa1,a2,a4,a5 are listed in Table 2 off16g for
integer n values. Using the initial valuesusl0d /4 !
=0.000 25 andg2sl0d=0.25 with l0=0.1 we obtain the static
flow presented in Figs. 3 and 4 for differentn.

While in Fig. 3sad u reaches itsn-dependent fixed point
value relatively fast atl ,10−5, the couplingg in Fig. 4 is
much slower. Atn=1 it reaches the finite valuegC at l
,10−10 while at n=2 it is even atl =10−40 considerably dif-
ferent from the fixed value 0. The different fixed points at
n=1, n=2, andn=3 are sketched in Fig. 3sbd. In the u-g2

plane the paths plotted are calculated from the initial values
to the fixed points indicated in the figure by different sym-
bols. On theg2 axis the unstable fixed pointu!=0,g!2

=2/n sat e=1d is represented by a square forn=1, a circle

for n=2, and an up triangle forn=3. Quite analogously at
theu axis the Heisenberg fixed pointu!=uH ,g!2=0, which is
stable atn=2 andn=3, is marked for all threen values. The
model C fixed pointu!=uH ,g!2=gC

2 is only drawn atn=1
swhere it is stabled. From Fig. 3sbd one can see that the

FIG. 3. sad Flow of the static couplingu/4! at three different
order parameter component numbersn. The initial valueusl0d /4! is
in all cases 0.00025.sbd Flow of u fseesadg andg2 ssee Fig. 4d in
the g2- u plane with the inital condition. The fixed points forn
=1,2,3 areindicated by different symbols.

FIG. 4. Flow of the static couplingg2 at three different OP
component numbersn, corresponding to theu flows in Fig. 3. The
initial value is in all casesg2sl0d=0.25.
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values ofu andg2 are driven first to the unstable fixed point
at theg2 axis and later change the direction to the stable one.
This causes the enhancement in the flow ofg2 in Fig. 4. Of
course this behavior depends on the initial values ofu andg2

and is obtained at very smallusl0d and largerg2sl0d. For
small enoughg2sl0d and/or largerusl0d the flow tends directly
to the stable fixed point andg2sld drops down from starting
from the initial value.

The behavior ofg influences the behavior of the flow of
the dynamic parametersri. This is shown in Fig. 5, where we
have plotted the flows ofr1 and r2 corresponding to the
static parameters in Figs. 3 and 4 at several values ofw3 for
n=1,2,3.r1 drops down to its fixed point value relatively
fast. But r2 contains the slow dynamic transient. The tran-
sient exponents are listed in Table II from which it is seen
that the values ofv± at n=1 are considerably larger than the
values atn=2 or n=3. In the casew3=0 where no coupling
between the two secondary densities exists, the flow ofr2 is
identical to the flow ofr in model C. From the behavior of
the flow we can expect that atn=2 andn=3 always effective
exponents will be observed in experiments or numerical
simulations instead of the asymptotic values. Even atn=1
where the asymptotics is reached atl ,10−10 the correspond-
ing exponents will be hardly observable in experiments.

VI. CONCLUSION

We have extended model C to model C8 where two con-
served densities couple to a nonconserved OP. It turned out
that the asymptotic critical properties of model C8 can be
related to those of model C. Although the fixed point value
of the ratio of the OP time scale to the time scale of the

statically coupled conserved density depends on the Onsager
coefficients time scale parameterw3 ffor the definition see
Eq. s23dg, the dynamical critical exponents and the transient
exponents are of course independent ofw3. The nonasymp-
totic properties however are strongly dependent on this time
scale parameter.

As was already shown in model C a fixed point with an
infinite ratio of the OP time scale to the conserved density
time scale is not stable. Thus one can expect that the problem
which appeared at the tricritical point in dynamics mentioned
by Siggia and Nelson does not appear in two-loop orderf18g.
Tricriticality is not described by a fixed point valuew2

!=` as
found in the one-loop calculationf5g, but by a finite value;
this restores scaling for the OP and the corresponding sec-
ondary density.
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APPENDIX A: DIAGONALIZATION OF THE STATIC
FUNCTIONAL

In general the structure of the secondary density static
functional of model- C*8-type systems is of the form

Hqhc0,qi0j =E ddxH1

2
q0

TAqq0 +
1

2
g̊q

Tq0ucW 0u2 − h̊q
Tq0J .

sA1d

The coefficient matrix

Aq = Sa11 a12

a12 a22
D sA2d

is usually related to thermodynamic derivatives in the non-
critical background. The matrix elementsaij represent in-
verse electric or magnetic susceptibilities in the case of elec-
tric or magnetic systems, and inverse compressibilities,
specific heats, and concentration susceptibilities in the case
of fluids, fluid mixtures, or superfluid mixturesssee, for in-
stance,f19–21gd. The secondary densities—the couplings to
the OP and the external fields—which are chosen to elimi-
nate the finite expectation value of the secondary densities,
are written as pseudovectors

q0 = Sq10

q20
D, g̊q = Sg̊q1

g̊q2

D, h̊q =Sh̊q1

h̊q2

D . sA3d

The superscriptT denotes the transposed quantity. In order to
simplify the perturbation expansion a transformation is con-
structed which diagonalizes the Gaussian part of the second-
ary densities and eliminates one of the couplings to the OP in
one step. Introducing the transformation

q08 = Mq0, sA4d

with the transformation matrix

FIG. 5. The flows ofr1 andr2 for all threen values at several
values of the cross time scale ratiow3. The flows correspond to the
static parameters in Figs. 3 and 4.
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M = S 1 M12

M12 M22
D sA5d

and matrix elements

M12 =

a12 −
gq1

gq2

a22

a11 −
gq1

gq2

a12

, M21 =
gq1

gq2

M22, sA6d

M22 =

a11 −
gq1

gq2

a12

a11 − 2
gq1

gq2

a12 + Sgq1

gq2

D2

a22

, sA7d

one static coupling is eliminated. With Eq.sA4d the static
functional sA1d turns into

Hq8hc0,qi08 j =E ddxH1

2
a1q108

2 +
1

2
a2q208

2 +
1

2
g̊28q208 ucW 0u2

− h̊28q208 J . sA8d

Note that the coefficientsaij and the ratiogq1
/gq2

do not
renormalize. Therefore the transformation is invariant under
renormalization. Rescaling the secondary densities bymi0
=Îaiqi08 leads to the expression given in Eq.s11d with corre-
sponding rescaled couplings and external fields. The advan-
tage of transforming the static functionalsA1d–sA8d lies not
only in the simplified perturbation expansion, but also in a
simplified renormalization procedure. In order to conserve
the connection between the model- C*8-type static functional
sA1d and the Landau-Ginzburg-Wilson functionals12d,
which is expressed by relations analogous to Eqs.s14d and
s15d, under renormalization a matrix formulation of the
renormalization procedure is necessaryf19g. With a static
functional of typesB10d and s11d the usual scalar renormal-
ization scheme can be used.

APPENDIX B: DIAGONALIZATION OF THE DYNAMIC
EQUATIONS

The dynamic perturbation expansion gets extremely com-
plex when a nondiagonal kinetic coefficientL, as in Eqs.s3d
ands4d, is present. In order to perform a two-loop calculation
it is absolutely necessary to diagonalize the matrix

L̊m = Sl̊ L̊

L̊ m̊
D sB1d

appearing in the dynamic equationss3d and s4d. The eigen-
values of the dynamic coefficient matrixsB1d are

l̊1 =
1

2
sl̊ + m̊ + K̊d, l̊2 =

1

2
sl̊ + m̊ − K̊d, sB2d

with

K̊ = Îsl̊ − m̊d2 + 4L2˚ . sB3d

The diagonal dynamic coefficient matrix is then obtained by

Sl̊1 0

0 l̊2

D = RTSl̊ L̊

L̊ m̊
DR, sB4d

where the transformation matrixR is obtained from the
eigenvectors corresponding to Eq.sB2d. It is an orthogonal
matrix sR−1=RTd and has the structure

R = SR11 − R21

R21 R11
D , sB5d

with

R11 =Î l̊ − m̊ + K̊

2K̊
, R21 =Îm̊ − l̊ + K̊

2K̊
. sB6d

The transformation to a diagonal dynamic coefficient matrix
implies the introduction of transformed secondary densities

m̄0 = RTm0. sB7d

The dynamic equationss3d and s4d reduce to

]m̄10

]t
= l̊1¹

2 dH

dm̄10

+ um̄1
, sB8d

]m̄20

]t
= l̊2¹

2 dH

dm̄20

+ um̄2
. sB9d

The transformed secondary densities also enter the static
functional leading to

Hm̄hc0,m̄i0j =E ddxH1

2
m̄10

2 +
1

2
m̄20

2 +
1

2
gT̄˚ m̄0ucW 0u2 − hT̊̄m̄0J .

sB10d

The static couplings and external fields transform according
to

g̊̄ =S g̊̄1

g̊̄2

D = RTS0

g̊
D , sB11d

h̄
˚

= 1h̄
˚

1

h̄
˚

2

2 = RTS0

h̊
D . sB12d

The perturbation expansion will be performed in the diago-
nalized dynamic models1d, s2d, sB8d, andsB9d. Introducing
time scale ratios

w̄i =
G

li
, i = 1,2, sB13d

within the dynamically diagonal model, quite analogous to
Eq. s23d , we obtainf22g
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zGsu,hḡj,hw̄jd = o
i

w̄iḡi
2

1 + w̄i
H1 −

n + 2

6
us1 − LAd

+
1

2o
j

w̄jḡ j
2

1 + w̄j
Sn + 2

2
LA −

n

2
+

w̄i

1 + w̄i

+
1

1 + w̄i

sw̄j
2l i j

sad − w̄i
2l ji

sadd + s1 + w̄i − w̄jd

3
1 + w̄i + w̄j

1 + w̄i

l i j
ssdDJ + zG

sAdsud, sB14d

with LA defined in Eq.s40d for the complex model C*8 and
Eq. s41d for the real model C8. The logarithmic terms are
defined as

l i j
ssd = ln

s1 + w̄ids1 + w̄jd
1 + w̄i + w̄j

, l i j
sad = ln

1 + w̄i

1 +
w̄i

w̄j

. sB15d

The last contribution in Eq.sB14d,

zG
sAdsud =

n + 2

36
u2SLA −

1

2
D , sB16d

is the two-loop expression of the corresponding model A
function. Neglecting the sum in Eq.sB14d and settingw̄i
=w̄j =w we obtain the result for model C* presented inf10g
fcompare Eq.s40d thereing. It is convenient to use the param-
eters

r̄i =
w̄i

1 + w̄i

, i = 1,2, sB17d

which will stay finite whenw̄i tends to` for the real case
instead of the time scale ratios. The rewrittenz function
sB14d reads

zGsu,hḡj,hr̄jd = o
i

r̄iḡi
2H1 −

n + 2

6
us1 − LAd

+
1

2o
j

r̄ jḡ j
2Fn + 2

2
LA −

n

2
+ r̄i

−
r̄ j

2sr̄ j − r̄id
s1 − r̄ jd2 lnS1 +

r̄i

r̄ j

− 2r̄iD
−

s1 – 2r̄ j + r̄ir̄ jds1 − r̄ir̄ jd
s1 − r̄ids1 − r̄ jd2 lns1 − r̄ir̄ jdGJ

+ zG
sAdsud. sB18d

Inserting the transformation rulesfKr is defined in Eq.s35dg

r̄1 =
2r1r2

r1 + r2 + Kr

, r̄2 =
2r1r2

r1 − r2 + Kr

sB19d

and

ḡ1 = R21g, ḡ2 = R11g, sB20d

with matrix elementssB6d rewritten in parametersri,

R11 =Îr2 − r1 + Kr

2Kr

, R21 =Îr1 − r2 + Kr

2Kr

,

sB21d

into the abovez function sB18d we obtain the corresponding
expressions33d in the dynamically nondiagonal model.
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